Tribe's Judicious Feminism

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Judicious Partitions of Hypergraphs

We prove the asymptotically best possible result that, for every integer k ≥ 2, every 3-uniform graph with m edges has a vertex-partition into k sets such that each set contains at most (1+o(1))m/k edges. We also consider related problems and conjecture a more general result.

متن کامل

Judicious partitions of graphs

The problem of finding good lower bounds on the size of the largest bipartite subgraph of a given graph has received a fair amount of attention. In particular, improving a result of Erdős ([10]; see also [11] for related problems), Edwards [9] proved the essentially best possible assertion that every graph with n vertices and m edges has a bipartite subgraph with at least m/2 + (n − 1)/4 edges....

متن کامل

Judicious k-partitions of graphs

Judicious partition problems ask for partitions of the vertex set of graphs so that several quantities are optimized simultaneously. In this paper, we answer the following judicious partition question of Bollobás and Scott [6] in the affirmative: For any positive integer k and for any graph G of size m, does there exist a partition of V (G) into V1, . . . , Vk such that the total number of edge...

متن کامل

Looking for Feminism

In a recent talk given at a North American University, a prominent feminist scholar from the United States observed that the contributions of Black women in mass political movements have been given short shrift in both conventional male-centred narratives of revolutionary movements (such as the Black Power movement in the USA), and mainstream feminist accounts of women’s activism, because inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stanford Law Review

سال: 1991

ISSN: 0038-9765

DOI: 10.2307/1228943